<u>点群・TINデータを利用した断面確認</u>

TOWISE CAD HC(以下HC)の【断面確認】コマンドをご紹介します。 HC の【断面確認】コマンドでは、点群やTINデータより抽出した横断面や縦断面の確認が可能です。 また、点群より断面を抽出する場合は、「有効とする変化点」の数値を調整することで、断面の凹凸や 間隔の調整が可能です。 ※横断は断面の作図も可能です(Ver.6.4.0.0から対応)縦断の作図は行えません。 ※【断面確認】コマンドは HC の 3Dモードで利用できます。

1.【断面確認】コマンドを開きます。

メニューバーの【Z値/その他】>【断面確認】をクリックします。

Ŧ					5				TOWISE CAD	HC - [点群
ファイル	地理空間	表示	編集	設定			/補助	ላ° ተንኮ	z値/その他	3D)/-1/
<mark>● ²⁻⁰⁹ Z值編集</mark> Z値編集:	2-00 2 <u>4</u> 4元 勾配確認(断	2	国産業 図面座標変	換						
	Z值編集	断面	確認の他							
: 🗋 新規	作成 泸 開く	(🔿 7)	ボート 🗕 🛃	80	16)	ا ک 🖻	» 🎟 🎘	🗈 🎕 💂	

- 2. 「Z値断面確認」が起動します。 「横断」または「縦断」モードに切り替えて作業を行います。
- Z値断面確認(横断)コマンド

Z値断面確認(横断)	_		
X Y 高さ設定 X Y オフセット量:	□多点指定 0.0000 🔶 m	Z=99 其一一日 断面(横断)	
			※「縦断」「横断」モードの切り替え
-50 0	50		
縮尺:縦 2500 ~ 横 2500 ~ 作図設定	作図	閉じる	
Z値断面確認(縦断)コマンド			
Z値断面確認(縦断)	_		
構成線 🕙 🗾 サーチ		Z=99 斯面(織新)	
╆_;;; �, Q, @ @ # # # ₽ � Ø			
		40	
<u></u>	20 31	<u> </u>	
縮尺:縱 2500 ~ 横 2500 ~		閉じる	

Z值断面確認(縦断)

◆「事前準備」縦断を抽出するライン(線分)を点群上にポリライン等で作図します。

※抽出した断面は確認のみ可能です。 (縦断の作図は行えません)

※断面の抽出に利用できる要素は、 《線分・ポリライン・円弧・クロソイド・線パーツ・混合パーツ》です。

◆抽出する縦断の線分を選択します。

①上図の赤枠をクリックし、オレンジ色であることを確認します。

②縦断を抽出する線分をクリックで選択します。 ※【サーチ】をクリックすると、抽出可能な線分を自動で追います。

◆抽出した縦断の確認

線分指示後、「ENTER」キーを押すと、抽出した縦断を確認画面に表示します。

	Z值断面確認(縦断) - C	X
	構成線 🕙 🗾 サーチ	Z=99 新面(織新)
	╆┓┇ � � ゅ ゅ ⊨ :::::::::::::::::::::::::::::	
111 Constant of the second sec		
		70
	高低差:9.9660	
	縮尺:縦 250 ~ 横 250 ~	閉じる